Alternatives to Pesticides

Attract-and-Kill, Mating Disruption, and Mulches

PMA 4570/6228

Attract-and-Kill

- Attractant
 - Color
 - Food bait
 - Pheromones
- Toxicant
 - Insecticide

- Examples
 - Last Call
 - Insecticide Treated Spheres
 - Many traps utilize this method

Insecticide Treated Spheres

- Attractant
 - Color
 - Sucrose
- Toxicant
 - Imidacloprid
 - Spinosad

- Effective against various Tephrididae
 - Apple maggot fly, Rhagoletis pomonella (Walsh)
 - Blueberry maggot fly,R. mendax Curran
 - Caribbean fruit fly,Anastrepha suspensa(Loew)
 - Mediteranian fruit fly,
 Ceratitis capitata
 (Wiedemann)

Mating Disruption

 Produce large amount of sex pheromones so that males cannot find females to mate with

- Pheromone dispensers
- Twist ties
 - Grape Root Borer (Vitacea polistiformis Harris)

Mulches

- Synthetic mulches
 - White mulch
 - Improves plant health
 - Reflective mulch
 - Improves plant health
 - Sunlight reflecting off of the mulch confuses potential pests insects such as aphids and whiteflies
 - Disadvantage
 - Disposal

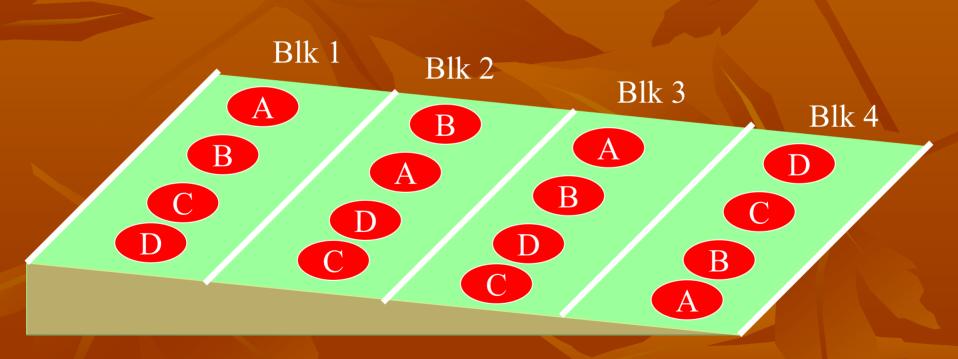
Mulches

Natural Mulches

- Wood chips
 - Improves plant health
 - Some weed suppression
 - Disadvantage: labor intensive
- Living mulches
 - Live plants intercropped with a cash crop
 - ex. buckwheat, clover
 - Attract and maintain natural enemy populations
 - Disadvantage: competition for resources

Experimental Designs and Hypothesis Testing

Experimental Designs


- Completely Randomized Design
- Randomized Block Design
 - Complete
 - Incomplete
- Latin Square
- Factorial
- Split plot

CRD (Completely Randomized Design)

Five artificial diets are going to be compared for egg production of eggs of *H. axyridis* (COL: Coccinellidae). The females are randomly selected from the same colony. Assuming that all the females are homogenous we are going to use a CRD.

Diet 1	Diet 4	Diet 2	Diet 4	Diet 3
Diet 2	Diet 3	Diet 1	Diet 3	Diet 5
Diet 3	Diet 1	Diet 2	Diet 5	Diet 4
Diet 1	Diet 5	Diet 4	Diet 5	Diet 2

RCBD (Randomized Complete Block Design)

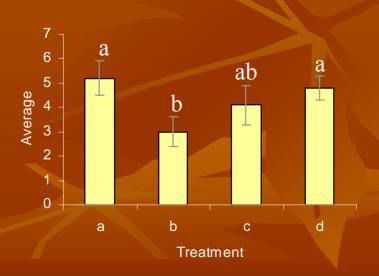
Hypothesis Testing

- Statistics allow us to determine the probability that a hypothesis will be true for any given sample (Flint and Gouveia 2001, p. 216)
 - $\mathbf{H_0}$: no difference
 - H_a: difference
- Type I Error: reject H₀ when it is true
 - $P(Type\ I) = \alpha$
- Type II Error: fail to reject H₀ when it is false
 - $P(Type\ II) = \beta$

Hypothesis Testing

 <u>p-value</u>: probability that observed variation among means could occur by chance

significance probability

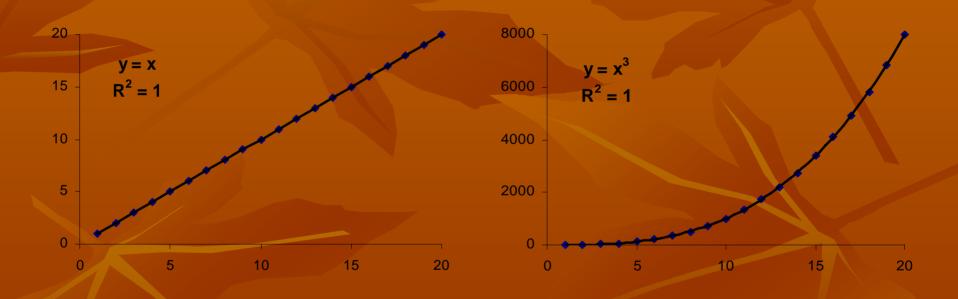

- P > 0.05: not significant, therefore do not reject H_0
- P \leq 0.05: significant, therefore reject H₀

Common Hypotheses

- Comparing 2 treatment means (t test)
 - \blacksquare H₀: The two treatment means are equal
 - \blacksquare H₁: The two treatment means differ
- Comparing 3 or more treatment means (ANOVA)
 - H₀: All of the treatment means are equal
 - H₁: At least one treatment mean differs
 - A means separation test is used to determine which treatments differ from each other

Means separation tests

- Tukey's test and LSD (Least Significant Difference) are common
- Only perform if ANOVA is significant
- Results look like this:
 - Treatment a 5.2 A
 - Treatment d 4.8 A
 - Treatment c 4.1 AB
 - Treatment b 3.0 B



Simple Linear Regression

- · Correlation coefficient: R
 - Between -1 and 1
 - Measures strength of linear relationship between *x* and *y*

- Coefficient of Determination: R²
 - Proportion of total variation in y attributable to variation in x

Simple Linear Regression

