Sprayer calibration

and chemical application

Elena M. Rhodes University of Florida Entomology and Nematology Department

www.ento.vt.edu/ Fruitfiles/calib.html

Before You Spray

Know your target

Know your equipment

Do the math

Know Your Target

Pest

Tobacco hornwormHeavy infestation

CropTomato

Pesticide SpinTor[®]

Label rate: 6 fl oz / acre

Area

- 10 rows
 - **5**0 ft long
 - 2 ft wide
- $100 \text{ ft}^2 \text{ per row}$
- 1000 ft²
- 0.023 acres

Know Your Equipment

Sprayer output

- 150 mL in 15 sec = 10 mL / sec
- Spray tank capacity4 L
- Velocity
 60 ft in 30 sec = 2 ft / sec
- Spray width1 ft
- Check your equipment before every application

specialtyhe.net/car_18818.htm

www.northerntool.com/we bapp/wcs/stores/servlet/pr oduct_6970_200312599_ 200312599

www.pestcontrolsupplies. com/ Tempo.htm

Do the Math

- How much pesticide
 - Area = 0.023 acres
 - Label rate of SpinTor[®] for heavy infestation of Tobacco Hornworm = 6 fl oz / acre

SpinTor[®] needed = (0.023 acres)(6 fl oz / 1 acre) = 0.138 fl oz = 4.085 mL

Do the Math

How much carrier (usually water)

Area = 1000 ft^2

■ Velocity = $(2 \text{ ft / sec})(1 \text{ ft spray width}) = 2 \text{ ft}^2 / \text{sec}$

Sprayer output = 10 mL / sec

Water needed = (1000 ft²)(1 sec / 2 ft²)(10 mL / 1 sec) = 5000 mL = 5 L

Do the Math

- 4.085 mL SpinTor[®] in 5 L water
- Our sprayer holds 4 L of water at a time
- Must apply 3.268 mL SpinTor[®] in 4 L of water, note where you stop, then apply the remaining 0.817 mL SpinTor[®] in 1 L of water

Or...

- Adjust velocity (increase to 2.5 ft / sec)
- Adjust sprayer output (decrease to 8 mL / sec)
- Adjust sprayer capacity (CO₂ sprayers)

Why is this important?

Improper application can lead to...

Inadequate control of the pest

Environmental contamination

Negative impacts on humans

Negative impacts on non-target organisms

Increased cost!

and

Its illegal!

"It is a violation of Federal Law to use this product in a manner inconsistent with its labeling"

Precision Agriculture Technologies

Elena M. Rhodes University of Florida Entomology and Nematology Department

Definition

Precision agriculture is

Managing each crop production input on a sitespecific basis to reduce waste, increase profit, and maintain the quality of the environment

Carefully tailoring soil and crop management to fit the different conditions found in each field

> Dr. Wonsuk "Daniel" Lee, University of Florida Agriculture and Biological Engineering Department

Variability

Temporal (in time)

Spatial (in space)

2_3_2.htm

0.2 Low crop density

Soil type

- Soil texture
- Soil moisture content
- Soil fertility
- Topography
- Diseases
- Insect and mite pests
- Weeds

Precision Agriculture Technologies

Positioning systems (GPS)

- Yield mapping
 - Soil sampling
- Remote sensing

Geographic Information System (GIS)

Global Positioning System (GPS)

Satellite-based navigation and radio-positioning system

■ Space segment

Control segment

■ User segment

http://audioconexus.wordpress.com/2008/06/11/ gps-pois/

24 satellites in
 6 orbital
 planes

At least 4 can be seen at any time at any place on the earth

Control Segment

Network of monitoring stations

Department of Defense (DoD)

 Master control at Schriever Air Force Base in Colorado Springs, Colorado

Minimize errors

User Segment

GPS receivers

http://www.sti.nasa.gov/tto/Spinoff2006/er_5.html

http://gpsinformation.us/main/18-GPS-Receivers.jpg

Satellite-based differential correction systems use geo-stationary satellites to relay the differential information from a network of base station receivers to mobile receivers

Ess and Morgan, 2003

Uses of GPS

- Mapping
- Parallel swathing
- Vehicle guidance system
- Chemical application

- Record locations
 - Soil sampling
 - Crop Scouting
 - Yield mapping

Dr. Wonsuk "Daniel" Lee, University of Florida Agriculture and Biological Engineering Department

Yield Mapping

Collect yield data from points within a field

Use a DGPS to get the coordinates of these points

Create a map showing the yield variations across the field

A combine equipped to collect yield data for mapping Ess and Morgan, 2003

Remote Sensing

 Techniques for collecting information about an object that you are not physically touching
 Passive

> Sensors detect electromagnetic energy from the sun that is reflected towards them by the object

Active

- A device sends electromagnetic energy towards and object
- The object reflects part of the electromagnetic energy back towards the device
- Sensors on the device detect this energy

http://www.stevesportfolio.co.uk/work/easy_gcse/electromagnetic_notes1.html

A Geographic Information System (GIS) is...

A collection of data containing spatial and sometimes temporal information

The software that contains and manipulates the data

The hardware that runs the software

Viewing Data

Databases

Applications

- Integrate and manipulate complex data
 - Locate something
 - Find patterns
 - Map quantities
 - Look at the inside of an area
 - Look at what is around an area
 - Map and analyze changes in an area

Earthquake Shaking Hazards

Population Density

Explosion Radius

Land Use Change

Land Use Change

GIS in Precision Agriculture

HS

Input

- Yield data
- Soil data
 - ∎ Туре
 - Texture
 - N, K, P
 - ∎ pH
 - Moisture
- Pest data
 - Weeds
 - Diseases
 - Arthropods

Output

Yield was high /
low in this area
of the field
because...

- Not enough N
- Less weeds
- Hot spot of mites
- Poor drainage

A Practical Example

Franzen, D. 1999. Yield Mapping. Site-Specific Farming No. 3, SF-1176(3), North Dakota State University. http://www.ag.ndsu.edu/pubs/plantsci/soilfert/sf1176-3.htm.

 Corn in Oakes, North Dakota

 Yield monitor combine

For more information

 Ess, D. and M. Morgan. 2003. The Precision-Farming Guide for Agriculturists. Deere & Company, Moline, IL.
 ISBN 0-86691-287-8

http://www.deere.com/publications