Managing yellow margined leaf beetle (*Microtheca ochroloma* Stål) in organic cole crops with trap cropping

Elena M. Rhodes and O. E. Liburd Entomology and Nematology Department Gainesville, FL

Organic Vegetable Production

- Growing industry in the US
 - 2011: 1,956 farms, 118,071 acres, sales value \$1,065,715,970

Percent of total acreage

Yellow Margined Leaf Beetle

Longevity: 16 – 186 d Fecundity: 200 or more eggs

13 d (3 – 4 instars + prepupa)

7.8 d

Host preference

Cruciferae

- Broccoli, cabbage, cauliflower, collards, mustard, radish, turnip, and watercress
- Turnip most preferred
- Also Japanese greens (mizuna and mibuna) and napa cabbage

Management

- Insecticides
 - Entrust[®] (spinosad), Pyganic[®] (pyrethrum)
 - Rotations: Pyganic® /Entrust® and NOFLYTM/Entrust®
- Few known natural enemies
 - Stiretrus decastigmus (Herrich-Schaeffer) in Brazil (Pentatomidae)
 - Spined solider bug, Podisus maculiventris (Say), in laboratory assays (Pentatomidae)

Objective

 To examine the potential of turnip as a trap crop for the YMLB in organically grown cruciferous crops

Hypothesis
Plots surrounded by turnip will
have less YMLB than plots without
turnip

Methods Spring 2012

Methods Winter 2012/2013

Methods: YMLB Counts

- Randomly selected 10 plants from each cash crop per plot
- Counted all YMLB adults and larvae
- Weekly samples from 6 March to 1 May, 2012 and 29 Nov 2012 – 17 Jan 2013
- Repeated measures analysis

Methods: Harvest Evaluation

- 10 plants from each cash crop per plot
- Rating scale
 - 1 very light (0 10%) defoliation
 - 2 light (10 30%)
 - 3 moderate (30 50%)
 - 4 heavy (50 70%)
 - 5 very heavy (70 90%)
 - 6 complete (90 100%)

Injury Rating

Injury Rating

Injury Rating

Results 2012: mustard

Results 2012: napa cabbage

Results 2012: YMLB numbers

Treatment

Treatment*Crop

Crop

Results 2012: YMLB numbers

27 Mar to 1 May

Interaction with time: all P > 0.07

Treatment*Crop P = 0.93

Results 2012: harvest evaluation

Treatment*Crop P = 0.76

Treatment

Untreated: 3.9 ± 0.3

Turnip: 2.3 ± 0.1

P = 0.0005

Crop

Mustard: 3.4 ± 0.4

Napa cabbage: 2.7 ± 0.4

P = 0.025

Results 2012/2013: mustard

Results 2012/2013: napa cabbage

Results 2012/2013: turnip (trap crop)

Results 2012/2013: YMLB numbers

Time interactions all $P \ge 0.06$

Treatment*Crop P = 0.35

Treatment

Untreated: 0.2 ± 0.1

Turnip: 0.6 ± 0.1

P = 0.03

Crop

Mustard: 0.2 ± 0.1

Napa cabbage: 0.6 ± 0.1

P = 0.07

Results 2012: harvest evaluation

Treatment*Crop P = 0.79

Treatment

Untreated: 1.2 ± 0.1

Turnip: 1.3 ± 0.1

P = 0.3

Crop

Mustard: 1.1 ± 0.1

Napa cabbage: 1.4 ± 0.1

P = 0.04

Discussion

- Turnip appears to be an effective trap crop useful in combination with other techniques
- An action threshold for spraying the turnip must include an injury assessment

Acknowledgements

- Dr. Henry Fadamiro
- Dr. Ron Cave
- Dr. Rammohan Balusu
- Participating growers
- Small Fruit and Vegetable IPM lab
- USDA Organic Vegetable Grant, project # 98833

