Changes in flower thrips distribution over time on a southern highbush blueberry field in Northcentral Florida

> Elena M. Rhodes Entomology and Nematology Department University of Florida Gainesville, Florida

Florida's Southern Highbush Blueberries

fresh market blueberries

2008 (USDA, 2009)

9.8 million lbs

3000 acres

Average of \$5.30 per lb

Flower Thrips

- ~90% of thrips captured in FL blueberries are *Frankliniella bispinosa* (Morgan) (Arevalo, 2006)
- Wide host range
- Feed and oviposit in all developing flower tissues

Feeding injury

Oviposition injury

Size of thrips populations in relation to flower phenology

Percentage of open flowers

Arevalo, 2006

Geostatistics

 "...a set of tools for incorporating the spatial and temporal coordinates of observations in data processing." – P. Goovaerts, 1997

Spatial variation among a set of sample points is modeled and the model is used to predict values at unsampled locations

Previous Research

15.24 m grid

Wide variation in range (distance where populations are spatially independent)

■ 2.51 – 79.80 m

Only 1 of the 3 weeks was well modeled
 Range was 11.04 m

Grid spacing was too wide

Objective

To model thrips spatial distribution utilizing geostatistical methods

To determine optimum trap spacing

HYPOTHESIS: Thrips' populations have a short range of spatial variability

Methods

Sampling

Sampled over a 5 week period Jan. 23, 2009 – Feb. 26, 2009 130 white sticky traps 100 on a 7.62 m grid 30 placed randomly

Inverness, FL Legend grid traps random traps pathways ----- fences sheds blueberries 40 0 5 1 0 20 30 Meters

Study site on a blueberry farm

Data source: Small Fruit and Vegetable IPM Laboratory University of Florida, Gainesville, FL Date: Feb. 26, 2009 Data collection: Trimble GPS reciever Created by: Elena M. Rhodes

Study Area

Semivariogram Modeling

Semivariance = a measure of the difference between two data points

Nugget = the semivariance at 0 lag

Semivariogram Modeling

Semivariograms were constructed for each week

SGeMS (Remey 2006)

5 m lags (total of 23)

Isotropic (directional independence)

Ordinary kriging was performed for each week utilizing the semivariogram models

Results

Jan. 30, 2009 (log_e transformed)

Distance (m)

Average thrips per flower on a blueberry farm in Inverness FL Jan. 30, 2009

Feb. 5, 2009 (log_e transformed)

< 30 thrips per trap were found throughout the sampling area

Feb. 13, 2009 (untransformed)

Distance (m)

Average thrips

Entomology and Nematology Department, UF Traps collected: Feb. 13, 2009 Map produced by: E. Rhodes Method: Ordinary Kriging

Feb. 20 (log_e transformed)

Model	Spherical
Nugget	0.30
Sill	0.41
Range	27.50 m
RMSE	16.13

Feb. 26 (log_e transformed)

Model	Spherical
Nugget	0.30
Sill	0.45
Range	23.75 m
RMSE	18.31

Distance (m)

Summary

The thrips population dropped to < 30 thrips per trap on Feb. 5

The large hot spot was located in the Northeast quadrant of the sample area, which was the middle of the blueberry field

■ Ranges varied from 17.50 – 28.75 m
■ Optimum trap spacing is ≥ 28.75 m

Acknowledgements

- Dr. Oscar Liburd
- Dr. Joseph Funderburk
- Dr. Robert McSorley
- Dr. Sabine Grunwald
- Florida Blueberry Grower's Association
- Small Fruit and Vegetable IPM laboratory staff and students

Questions?

