Comparison of Single and Combination Treatments of *P. persimilis, N. californicus*, and Acramite for Control of Twospotted Spider Mite in Florida Strawberries

Elena M. Rhodes Department of Entomology and Nematology University of Florida Gainesville, FL

Strawberry Production in Florida

- Ranks 2nd behind CA
- Produces 100% of the domestically grown winter strawberries
- 2,873 ha (7,100 acres)
- \$178 million value

Twospotted Spider Mite (TSSM)

- Tetranychus urticae Koch
- Life cycle takes ~19 days and females can lay up to 100 eggs

- Optimal conditions for development are high temperatures (up to 38°C) and low humidity
- Greenish-yellow and red forms

Control of TSSM

- Miticides
 - Acramite[®] (bifenazate)
- Predatory Mites
 - Phytoseiulus persimilis Athias-Henriot
 - Neoseiulus californicus (McGregor)

Acramite[®] (bifenazate)

- Reduced-risk pesticide
- Only 2 applications in a season
- 1.125 kg/ha (1 lb/acre)

Phytoseiulus persimilis Athias-Henriot

- Feed almost exclusively on *Tetranychus* mites
- Short developmental time, a non-feeding larval stage, and a high rate of fecundity

Neoseiulus californicus (McGregor)

- Prefer tetranychid mites but can subsist on other foods
- Short developmental time and a high rate of fecundity
- Larvae are facultative feeders

Goal

- To evaluate combination treatments of the two predatory mite species and Acramite for control of TSSM in Florida strawberries
- To compare these combination treatments to single treatment applications

Experiment 1

- 2003/ 2004 field season
- Plant Science Research and Education Unit in Citra, FL
- P. persimilis/ N. californicus combination

Methods

Methods

- Samples were taken once per week starting on 11/26/2003
 - 1 leaflet per row (6 leaflets per plot)
- Dates treatments were applied
 - Week of 12/11/03
 - Week of 2/11/04

 Both TSSM and predatory mites were counted

Weekly average TSSM motiles in each treatment

Weekly average TSSM eggs in each treatment

Average TSSM motiles in five periods during the 2003/ 2004 season

Average TSSM eggs in five periods during the 2003/ 2004 season

eggs p = 0.2837

Average *P. persimilis* per leaflet in *P. persimilis* vs. *P. persimilis* / *N. californicus* treatments

Motiles: $\rho = 0.0004$ eggs: $\rho = 0.0001$

Experiment 2

- 2003/2004 field season
- Plant Science Research and Education Unit in Citra, FL
- Acramite/ N. californicus combination

Methods

- Compared 4 Acramite/ N. californicus plots with 4 control plots
- Same sampling methods and treatment dates as in experiment 1
- Both TSSM and predatory mites were counted

Average TSSM per leaflet in each treatment

Control vs. Acramite/ *N. californicus* treatment motiles: p < 0.0001eggs: p < 0.0001

Conclusions

- Releasing both species in combination does not appear to be significantly better than releasing *N*. *californicus* alone
- When using both species in combination, *N. californicus* may displace *P. persimilis*
- The Acramite/ *N. californicus* treatment appeared to effectively control TSSM
- The second application of the Acramite/ *N*. *californicus* treatment may have been unnecessary

Acknowledgements

- Dr. Oscar Liburd
- Small Fruit and Vegetable IPM Laboratory staff and students
 - Crystal Kelts
 - Carolyn Mullen
 - Jeff White
 - Alejandro Arevalo

- Citra Plant Science, Research, and Education Unit
- Marinela Capana and Dr. Ramon Littell (IFAS Statisitcs)

